Open Data Science job portal

Data Science Solutions Architect 1069 views

What is Enterprise Data?
Bloomberg’s Enterprise Data department develops data offerings that are considered best in a class by the capital markets community. Across real-time market data, reference data, historical pricing data, and unique analytics they offer:

    • The most comprehensive and highest quality content in the industry.
    • Distribution platforms that are flexible, reliable, fast, and easy to onboard.
    • Easy to use data that is ready for analysis.
    • These critical datasets serve as the primary source of information across the front, middle, and back-office at the most respected capital markets firms across the globe. What is the Role? Capital markets firms are purposefully embracing data science and machine learning techniques into their workflows. Motivated by increasingly sophisticated competition or cost savings, data science and machine learning have become a critical aspect of their customers’ business strategies. Bloomberg wants to be the leader in analysis-ready data that allows clients to focus on the business of creating advanced analytics solutions rather than data ingestion and normalization.

You will play a meaningful role in helping customers and Bloomberg, together, achieve success. As a hands-on liaison between Bloomberg product development teams and the data science teams at their customers, the Solutions Architect will provide experienced technical design, data science thought leadership, and Bloomberg recommended standard methodologies as customers develop solutions on-premises or in the public cloud.

The ideal candidate will be a customer-focused data scientist with advanced technology skills that seek opportunities to get their hands dirty while confidently working with clients to design and build solutions that will best demonstrate Bloomberg content and technology in conjunction with modern data science tools and workflows.

They’ll Trust you to:

    • Lead deep technical discussions with customers, vendor partners, and Bloomberg colleagues from Product, Sales, Quant -Research & Development, Engineering, and Client Services.
    • Serve as subject matter experts in demonstrating advanced data science workflows and technologies for capital markets use cases.
    • Engage with customers as part of their solution creation team.
    • Confidently make recommendations (based on standard methodologies) to customers and partners.
    • Develop collateral including tutorials, sample code, reference implementations, and presentations that will be used by data science practitioners as well as executive decision-makers.
    • Provide feedback to Product, Quant, and Engineering teams to help shape product strategy and execution roadmap.
    • Balance hands-on work with a desire to keep up with trends.

What do I need to apply?

    • Experience with applying data science/quantitative modeling to real-world, financial use cases commonly deployed at capital market firms.
    • Understanding of capital markets, banking, asset management, and/or the trade lifecycle.
    • Extensive knowledge of leading open-source data analysis tools and machine learning libraries.
    • Experience with tools and frameworks enabling large scale data analysis (e.g., Spark) and advanced programming skills in commonly used languages for analysis (e.g., python, R).
    • End-to-end knowledge of the data science problem, including large scale data and data pipeline management.
    • Proficiency in crafting technical documentation and presentations (white-board, small team, broad audience).
    • Entrepreneurial mindset and comfortable to work in a non-hierarchical, large global organization where interaction with senior management is required.
    • Passion for consistent learning.
    • Ability to travel
    • It’s a plus if you have:
    • Advanced knowledge of AWS, GCP, and/or Azure data science and machine learning services
    • Experience applying advanced machine learning to large scale, financial modeling problems
    • Master’s degree or Ph.D. in a quantitative discipline

They are an equal opportunity employer and value diversity at their company. They do not discriminate on the basis of race, religion, color, national origin, gender, sexual orientation, age, marital status, or disability status.


    More Information

    Share this job
    Company Information
    Connect with us
    Contact Us

    Here at the Open Data Science Conference we gather the attendees, presenters, and companies that are working on shaping the present and future of AI and data science. ODSC hosts one of the largest gatherings of professional data scientists with major conferences in the USA, Europe, and Asia.

    Contact Us