Open Data Science job portal

Machine Learning Engineer, Payment Intelligence 1377 views

The Payment Intelligence group is responsible for optimizing each of the billions of dollars of transactions processed by Stripe each year on behalf of their users, in order to maximize successful transactions while minimizing payment costs and fraud. They own products like Radar from end to end and work across the technical stack: from crafting machine learning models over their users’ data, to integrating ML intelligence and serving real-time predictions as part of Stripe’s payment infrastructure, to building user-facing product surfaces like dashboards and controls.

Stripe builds economic infrastructure for the internet, supporting businesses worldwide ranging from fledgling upstarts to Fortune 500s. These businesses place significant trust in Stripe to accelerate their success. This makes the user-facing teams at Stripe mission-critical: these teams provide fast, accurate answers in the context of their users’ businesses across phone, email, and chat.

You Will

    • Design machine learning platforms and pipelines for training and running machine learning models that improve the efficiency of transactions on Stripe. This could involve:
    • Building prediction models for new aspects of transaction outcomes, like whether they expect to win a dispute given auto-submitted evidence.
    • Improving the accuracy of their prediction models for transaction outcomes, like whether a payment will be accepted or declined by the card network, or disputed as fraudulent by a cardholder.
    • Understanding their users’ business needs in order to evaluate model performance and improve the value model they use to evaluate transaction outcomes.
    • Developing and evaluating new model architectures that improve the accuracy of their prediction models.
    • Incorporate new features and sources of data.
    • Writing simulation code using Scalding to run MapReduce jobs on their Hadoop cluster to help them understand what would happen across different segments if they changed how they action their models.
    • Integrating new models and behaviors into Stripe’s core payment flow.
    • Collaborating with their machine learning infrastructure team to build support for new model types into their scoring infrastructure.


They’re Looking For Someone Who Has

    • An advanced degree in a quantitative field (e.g. stats, physics, computer science) and some experience in software engineering in a production environment.
    • 4+ years industry experience doing software development on a data or machine learning team.
    • Knowledge about how to manipulate data to perform analysis, including querying data, defining metrics, or slicing and dicing data to evaluate a hypothesis.
    • The ability to thrive in a collaborative environment involving different stakeholders and subject matter experts.
    • Pride in working on projects to successful completion involving a wide variety of technologies and systems.
    • Comfort working directly with your users.


What’s it like to work at Stripe?

Stripe is helping the internet fulfill its potential as a platform for economic progress by building software tools that accelerate global economic access and technological development. Stripe makes it easy to start, run and scale an internet business from anywhere in the world.

Stripe is, at its heart, an engineering company. To provide a missing pillar of core internet infrastructure, they hire people with a broad set of technical skills (and from a wide variety of backgrounds) who are ready to take on some of the most challenging problems in the industry – from reliably handling 100M API requests per day to build adaptive machine learning as a result of years of data science and infrastructure work, and enabling entrepreneurs worldwide to start a global internet business.

They look at Stripe as a constant work in progress and the same is true of their people; they believe the best is yet to come. They’re here to support each other in their curiosity and creativity – which they pursue through thoughtful discussion and knowledge-sharing among a diverse set of peers and colleagues. They encourage all engineers to transition teams once every year and a half and also take on short-term projects with other teams across Stripe. This enables engineers to learn how different parts of Stripe work while also establishing stronger ties and cross-pollination between groups.

They contribute to existing open-source projects and the people working on them, and they release several tools as open-source. They want to work in a company of warm, inclusive people who treat their colleagues exceptionally well. The kind of people who are committed to going out of their way to help other Stripes in the short-term and pushing them to improve over the long-term (by helping them to get better at what they do). They’re a highly cross-functional organization and view that as part of the fun: they design their space to encourage as much collaboration as possible. They have long tables in the kitchen for a reason (to enable everyone to meet new people and learn from them). They also have a culture of transparency that they carry through to email communication, ensuring that Stripes all around the world have the information they need to make good local decisions.

In both their products and their people, they aim to reflect, represent and advocate for all of their users, globally. Their users transcend geography, culture, and language; what they share, collectively, is a drive to create a fairer, more economically interconnected world.

You Should Include These In Your Application

  • A short introduction describing who you are and what you’re looking for. What projects have you enjoyed working on? Which have you disliked? What motivates you?
  • Links to online profiles you use (e.g. GitHub)
  • A description of your work history (whether as a resume, LinkedIn profile, or prose)

More Information

Share this job
Company Information
Connect with us
Contact Us

Here at the Open Data Science Conference we gather the attendees, presenters, and companies that are working on shaping the present and future of AI and data science. ODSC hosts one of the largest gatherings of professional data scientists with major conferences in the USA, Europe, and Asia.

Contact Us